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Abstract. The photochemical reflectance index (PRI) has emerged to be a pre-visual indicator of water stress. However, 

whether the varying shadow fraction, which may be caused by multiple view angles or the changing crop density in the field, 

affects the performance of PRI in detecting water stress of crops is still uncertain. This study evaluated the impact of the 

varying shadow fraction on estimating relative water content (RWC) across growth stages of winter wheat using different 10 

formulations of PRI. Results demonstrated that PRI570, PRI1, and PRI2 of shadow were higher than those of sunlit leaves 

for unstressed plants, but the contrary results were achieved for stressed plants. Despite the difference between PRI_shadow 

and PRI_leaf, the significance of the linear relationship between RWC and PRI did not change with the different ratio of 

sunlit leaves and shadow. For most studied PRI formulations, the slope and intercept of the linear regression model between 

PRI and RWC changed proportionally with the shadow fractions. We applied a uniform RWC prediction model to the data 15 

of varying shadow fractions and found that the accuracy of RWC predictions was not significantly affected, indicating that 

the effect of varying shadow fractions was minimal to the seasonal water stress detection in winter wheat using PRI. 

1 Introduction 

Agriculture consumes about 80%-90% of fresh water worldwide (Gonzalez-Dugo, Durand, and Gastal, 2010). Water 

stress is one of the most critical abiotic stressors limiting plant growth and crop production (Chaves, Maroco, and Pereira, 20 

2003). Climate change, increasing worldwide shortages of water, frequent droughts are exacerbating the agricultural water 

crisis and putting global food security at risk (Hirich et al. 2016; Lei et al., 2016). The assessment of water status in crops is 

critical for precision irrigation practices, balancing crop production with the water supply and sustainable farming. Remote 

sensing provides a unique tool to unobtrusively, efficiently and quantitatively assessing water status in crops. As water stress 

induces plants’ stomatal closure, leading to the increasing leaf temperature due to the decreasing evaporative cooling, 25 

remotely monitoring the change in canopy temperature is a direct way to evaluate water stress. Monitoring water stress with 

thermal remote sensing has been accomplished using spectrometers at ground level (Idso et al., 1981), thermal sensors at 

image level , and satellite thermal information at large scales (Sayago, Ovando, and Bocco., 2017). However, the thermal 

remote sensing of water stress has limitations in both physiological and operational aspects. The physiological relationship 
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between canopy temperature and stress is not clear for some crops (Villalobos, Testi, and Moreno-Perez, 2009). Due to the 

technical reasons, the spatial resolution of thermal imaging sensors is generally coarser than the visible and infrared sensors, 

limiting its applications at local scales.  

In a recent decade, the photochemical reflectance index (PRI) has emerged to be a pre-visual indicator of water stress. 

PRI is a normalized difference of reflectance at 531 nm and reflectance at a reference band (e.g. 570 nm) in the visible 5 

domain. It is initially proposed as an indicator of the de-epoxidation state of the xanthophyll pigments, relating to 

photosynthesis (Gamon, Peñuelas, and Field, 1992). When the light absorbed by the plants exceeds the photosynthetic 

demand, de-epoxidation of xanthophyll cycle pigments occurs and results in the downregulation of photosynthesis (Gamon, 

Peñuelas, and Field, 1992). Water stress is one of the important triggers to the xanthophyll cycle, leading to the apparent 

drop in reflectance at 531 nm (Muller 2001; Sun et al., 2008; Sarlikioti, Driever, and Marcelis, 2010; Zarco-Tejada et al., 10 

2013). Several previous studies investigate the feasibility of using PRI to assess plant water status at leaf level and canopy 

level. At leaf level, a number of studies demonstrate a close relationship between PRI and physiological indicators of water 

stress (Thenot, Méthy, and Winkel, 2002; Shahenshah et al., 2010), but some other studies report a poorer relationship due to 

the confounding environmental factors (Sarlikioti, Driever, and Marcelis, 2010) or the changes in pigment pools (Sun et al., 

2008). At canopy level, the ability of PRI for water stress detection is affected by canopy structure, canopy cover and 15 

viewing geometry (Rossini et al. 2013; Panigada et al., 2014). Particularly, at seasonal and inter-annual time scales, 

physiological changes, such as relative water content and pigment pools, concurrently occur with structural changes, such as 

leaf area index (LAI). The limited long-term studies show that canopy PRI is sensitive to the structural changes during the 

growth season (Gitelson, Gamon, and Solovchenko, 2017), which significantly affects its capabilities to detect water stress 

(Suárez et al., 2010; Zarco-Tejada et al., 2013). To minimize the impact of canopy structures on PRI, transformations of PRI 20 

are developed using the band insensitive to the canopy structure (Hernández-Clemente et al., 2011), the structural vegetation 

indices (VIs) for the normalization (Zarco-Tejada et al., 2013; Gitelson, Gamon, and Solovchenko, 2017), or the radiative 

transfer modeling results (Hernández-Clemente et al., 2011). 

While improvements have been achieved for detecting water stress with canopy PRI, the impacts of shadowing on PRI 

and its capability to detect water stress are generally ignored. PRI is primarily driven by the xanthophyll cycle at the short 25 

time scale (e.g. a few hours, two to three days), but shaded leaves may not experience de-epoxidation of xanthophyll cycle as 

the sunlit leaves do. As PRI is expected to be applied to monitoring water stress at large scale, canopy PRI derived from 

satellite data includes contributions from both the sunlit leaves and shaded leaves. Hall et al. (2008) and Hilker et al. (2010) 

found that canopy PRI is strongly dependent on canopy shadow fractions, and that the directional changes observed in PRI at 

a given 15 minutes or half hour interval can be attributed to changes in canopy shadow fractions. Cheng et al. (2009) 30 

examined the contributions of variable sunlit/shaded canopy ratios to the simulation of canopy PRI with the two-layer 

Markov chain analytical canopy reflectance model, confirming the importance of adding shaded leave in the simulation. 

Takala and Mõttus (2016) demonstrated that the illumination-induced shadowing effects explained the observed dynamic 

range of apparent canopy PRI derived from the high spatial resolution airborne imaging spectroscopy data.  
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Previous studies have shown that within-canopy shadowing effects directly affect PRI of a canopy, but whether the 

shadowing effect further influences the PRI’s capability in detecting water stress in the growth season of a crop is still 

uncertain. The objective of this study is to analyze the impact of varying shadow fractions on the performance of canopy PRI 

in detecting water stress during the growth season of winter wheat using a hyperspectral imager. To accomplish this 

objective, we conducted water stress experiments of winter wheat for two consecutive years. Reflectance of shaded and 5 

sunlit leaves derived from hyperspectral imagery were mixed with varying fractions to quantify the shadow effects on 

different formulations of PRI in detecting water stress at the seasonal scale.  

2 Materials and Methods 

2.1. Study Site and Experimental Design  

During the growth seasons of 2016 and 2017, two water stress experiments were conducted in the facilities at Huazhong 10 

Agricultural University, China (30°28′N, 114°22′E). The mean annual temperature is approximately17.0 °C and the mean 

annual total precipitation is around 1256 mm. The seeds of cultivar ‘Zheng 9023’, which is widely planted in central China, 

were used in the experiment. Seeds were sown on November 2nd, 2015 and November 26th, 2016 respectively, in a rectangle 

plastic pot (L70cm×W40cm×H35cm) with the density of approximately 250-300 seeds/pot. The soil was silt loam, with the 

volumetric water content of 26% at the field capacity. Sufficient NPK (5:4:1) fertilizer was applied in the soil before sowing. 15 

The experiments consisted of 28 pots in 2015-2016 and 15 plots in 2016-2017. Pest and disease control were conducted in 

the same time during the growth period, to ensure the plants were not under additional stresses other than different levels of 

water stress.  

Seedlings were growing outdoor under the natural condition before the water stress experiments started. Soil water 

content was measured every 4-5 days using a time domain reflectometry (TDR300, Spectrum Technology Inc., USA), and 20 

tap water was supplied if soil water content was below 70% of the field capacity. The water stress treatments started at the 

end of February, which was the tiller initiation stage.  Pots were moved to a rain-out shelter to prevent the external water 

supply. In 2015-2016, 28 pots were divided into five groups. A group of four pots was used as the reference, which had 

sufficient water supplies throughout the experiment. The other four groups (with six pots for each group) stopped watering 

on Feb 24th, March 6th, March 28th, and April 8th respectively. In 2016-2017, 15 pots were divided into six groups. A group 25 

of three pots was used as the reference, which had sufficient water supplies throughout the experiment. The other four 

groups (with three pots for each group) stopped irrigation on March 15th, March 22th, March 29th, and April 12th respectively. 

After irrigation stopped, soils of the treated pots were left to dry to analog the natural drought condition. In 2016, 

measurements were taken every two to five days depending on the weather conditions until immature senescence occurred. 

For the water treatment group, three pots of winter wheat were used for capturing hyperspectral images, and the other three 30 

pots were used to collect samples. In 2017, measurements were taken every four to six days until immature senescence 

occurred. For the water treatment groups, one pot of winter wheat was used for capturing hyperspectral images, and the other 
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two pots were used to collect samples. In both years, measurements were taken in control groups during the whole 

experiment.  

2.2 Physiological measurements 

In this study, we used relative water content (RWC) as the indicator of water stress, because RWC was recommended 

by previous studies as an effective physiological indicator of water status (Hewitt et al., 1985; Siddique, Hamid, and Islam, 5 

2000). We randomly chose three plants in the sampled pot, and all leaves of the sampled plants were cut from the stem. 

Leaves were taken into ten small round pieces with a puncher and put into a zip lock bag. Leaf samples were enclosed in a 

cooler and brought to the laboratory to measure RWC. In the laboratory, fresh weight was measured with an electronic 

balance. The leaf samples were immersed in distilled water for 16-18 hours. We dried the surface moisture and weighed the 

turgid weight. Afterward, all samples were put into aluminum boxes to dry in the oven at 105 °C for 15-20 minutes, and then 10 

dried at 80 °C for about 10 hours when a constant dry weight was reached. The RWC of leaf samples was calculated as: 

𝑅𝑊𝐶 =
𝑊𝐹−𝑊𝐷

𝑊𝑇−𝑊𝐷
  （%）                                                                                                                                                          （1） 

where WF is the fresh weight, WT is the turgid weight, and WD is the dry weight. 

2.3 Spectral data 

2.3.1 Hyperspectral image acquisition 15 

Hyperspectral images were recorded in situ using SOC710VP Portable Hyperspectral Imager (Surface Optics 

Corporation, USA). The imager has a spatial resolution of 640×640 pixels and 128 bands in the range of 379-1039nm, with a 

spectral resolution of 4.6875 nm and a 25° field of view (IFOV). The transparent shed was open half an hour before 

measuring began. The imager was set up with a nadir view angle and approximately 1.5 m above the canopy. Hyperspectral 

images were recorded under sunny and cloudless conditions around midday (10:00-14:00) local time. A reference spectral 20 

panel was placed on the pot for each measurement to correct for radiation measurement errors due to differences in solar 

illumination. The spectral data was acquired by LuCamSoftware Camera Drivers and the HyperScanner Software platform. 

After the hyperspectral images acquisition was completed, the radiometric calibration and wavelength correction were 

performed using the SOC’s Spectral Radiance Analysis Toolkit (SRAnal), converting the raw DN values of the 

hyperspectral image to reflectance. 25 

2.3.2 Hyperspectral image classification 

In this study, the Mahalanobis distance method, a supervised classification method was used to classify each 

hyperspectral image into: leaves, pots, reference plates, ground, and shadows. The supervised classification was performed 

in ENVI (The Environment for Visualizing Images). The average overall accuracy of all classified images is 0.90, and the 

Kappa coefficient is 0.83. An example of the original hyperspectral image versus the classified image is shown in Figure 1. 30 
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(a)                                                                                   (b) 

Figure 1. The original hyperspectral image shown in RGB form (a), and the classified image using the Mahalanobis distance 

classification method (b). 

2.3.3 Spectral reflectance extraction and preprocessing 5 

A region of interest (ROI) of 100×200 pixels was established in the center of each image. Within a ROI, reflectance of 

pixels identified as green leaves was averaged and used as reflectance of sunlit leaves; reflectance of pixels identified as 

shadow was averaged and used as reflectance of shadow. Based on the assumption of the linear mixture of shadow and sunlit 

leaves, we mixed different fractions of shadow reflectance with sunlit-leaf reflectance to evaluate the shadow effect on 

detecting water stress with PRI. The fraction of shadow and the fraction of sunlit leaves should be summed to 1. We also 10 

calculated the average reflectance within the ROI including all the shadow pixels and green-leaf pixels.  

The derived spectral data was interpolated to 1 nm band width using the cubic spline interpolation function in the 

MATLAB software. Twelve existing VIs, including the normalized vegetation index (NDVI), the water index (WI), the ratio 

of WI and NDVI (WI/NDVI), the corrected red edge normalized vegetation index (mNDVI705), different formulations of 

PRI (Table 1). In addition, we calculated the difference between VIs of sunlit leaves and VIs of shadow (Equation (2)). In 15 

order to provide a more intuitive description, we normalized ∆VI using the maximum and minimum ∆VI. The normalized 

∆VI (Equation (3)) was applied to quantify the variations of ∆VI during water stress. 

∆VI = VI_leaf_ − VI_shadow                                                                                                                                                     (2) 

∆VI_normalized =
∆𝑉𝐼_𝑚𝑎𝑥𝑖𝑚𝑢𝑚−∆𝑉𝐼

∆𝑉𝐼_𝑚𝑎𝑥𝑖𝑚𝑢𝑚−∆𝑉𝐼_𝑚𝑖𝑛𝑖𝑚𝑢𝑚 
                                                                                                                           (3) 

 20 
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Table 1. Photochemical reflectance index (PRI) formulations and structural and water vegetation indices used in this study. 

R is the reflectance at the specified wavelength in nm.  

Index Equation Reference 

PRI570 (R531-R570)/(R531+R570) Gamon, Peñuelas, and Field (1992) 

PRI1 (R528-R567)/(R528+R567) Gamon, Filella, and Penuelas (1993) 

PRI2 (R539-R570)/(R539+R570) Penuelas, Filella, and Gamon (1995) 

PRI3 (R531-R515)/(R531+R515) Hernández-Clemente et al. (2011) 

PRI4 (R531-R512)/(R531+R512) Hernández-Clemente et al. (2011) 

PRI5 (R531-R600)/(R531+R600) Gamon, Filella, and Penuelas (1993) 

PRI6 (R531-R670)/(R531+R670) Gamon, Filella, and Penuelas (1993) 

PRI7 
RDVI=(R800-R670)/(R800+R670) ^0.5  

PRI570/[RDVI*(R700/R670)] Zarco-Tejada et al. (2013) 

NDVI (R800-R680)/(R800+R680) Tucker (1979) 

WI R900/R970 Peñuelas et al. (1993) 

WI/NDVI 
R900/R970/((R800-

R680)/(R800+R680)) 
Peñuelas and Inoue (1999) 

mNDVI705 (R750-R705)/(R750+R705-2*R445) Sims and Gamon (2002) 

2.4. Statistical Analysis 

Measurements taken from pots that had the same water treatments were averaged and used in the analysis. Pearson 

correlation coefficient (r) measured the linear correlation among VIs, shadow fractions, and RWC. Coefficient of variation 5 

(CV) and standard deviation were used to evaluate the variation of observations. Least-square linear regression model was 

used to describe the relationship between VIs and RWC. R2 was used to evaluate the significance of the empirical 

relationship, and root mean square error (RMSE) was used to measure the actual average differences between measurements 

and modeled predictions. Statistical analysis was performed in the MATLAB software. 

3 Results 10 

3.1 PRI of stressed and unstressed plants 

The spectra of sunlit-leaf pixels and shadow pixels are presented in Figure 2. The reflectance of the shadow was 

obviously lower than that of the leaf. The spectra of the shadow showed a rise in the near infrared region, but unlike the 

spectra of the leaf, the peak in the green region was not as obvious as that in the sunlit leaves. 
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Figure 2. Spectra of sunlit leaves and shadow. 

We calculated the difference between VI of sunlit leaves and VI of shadow for stressed and unstressed plants separately. 

For each VI, the statistical summary demonstrated pronounced differences between stressed and unstressed plants (Table 2). 

For unstressed plants, △PRI570, △PRI1, △PRI2, △NDVI, and △mNDVI705 had higher values in shadow than in sunlit 5 

leaves, but the rest of the studied VIs had lower values in shadow than in sunlit leaves. For stressed plants, different 

formulations of PRI had lower values in shadow than in sunlit leaves, except for △PRI7 and △WI/NDVI. 

 

Table 2. The maximum, minimum, mean, coefficient of variation (CV) and range of the difference between vegetation 

indices (VIs) of sunlit leaves and VIs of shadow (∆VI) for unstressed plants (a) and stressed plants (b).  10 

(a) 

 Maximum Minimum Mean CV Range 

△PRI570 0.0136  -0.0408  -0.0170  -1.0005  0.0544  

△PRI1 -0.0021  -0.0395  -0.0244  -0.5350  0.0374  

△PRI2 0.0260  -0.0298  -0.0047  -3.4747  0.0558  

△PRI3 0.0418  -0.0155  0.0161  1.0059  0.0573  

△PRI4 0.0439  -0.0223  0.0118  1.5975  0.0662  

△PRI5 0.0825  -0.0298  0.0197  1.7388  0.1124  

△PRI6 0.1960  -0.0157  0.0844  0.7125  0.2117  

△PRI7 0.0155  -0.0129  0.0044  1.7887  0.0283  

△NDVI 0.0534  -0.0719  -0.0168  -2.0570  0.1253  

△WI 0.0656  -0.0453  0.0028  1.0522   0.1109  

△WI/NDVI 0.1194  -0.0179  0.0295  1.4640  0.1373  

△mNDVI705 0.0574  -0.0795  -0.0282  -1.4538  0.1369  
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(b) 

 Maximum Minimum Mean CV Range 

△PRI570 0.0530  -0.0273  0.0154  1.2558  0.0802  

△PRI1 0.0306  -0.0364  0.0015  2.7709 0.0670  

△PRI2 0.0602  -0.0150  0.0274  0.7380  0.0752  

△PRI3 0.0811  0.0018  0.0387  0.4814  0.0792  

△PRI4 0.0943  -0.0093  0.0426  0.5510  0.1036  

△PRI5 0.1506  0.0081  0.0766  0.5168  0.1425  

△PRI6 0.3110  0.0240  0.1853  0.4076  0.2870  

△PRI7 0.0088  -0.3965  -0.0999  -1.0143  0.4053  

△NDVI 0.2361  -0.0386  0.0901  0.8437  0.2747  

△WI 0.0829  -0.0124  0.0434  0.5770  0.0952  

△WI/NDVI 0.2395  -1.2349  -0.3171  -1.1939  1.4744  

△mNDVI705 0.1273  -0.0872  0.0414  1.3388  0.2145  

 

 

Figure 3. Temporal variation of the normalized difference between VI of sunlit leaves and VI of shadow during the water 

stress treatment. 5 

To analyze variations of ∆VI  during water stress, we normalized ∆VI  using the maximum and minimum ∆VI . As 

illustrated in Figure 3, the normalized ∆PRI570, ∆PRI1, ∆PRI2 and ∆PRI5 show similar temporal trends after irrigation 

stopped. They fell on the ninth to eleventh day of the water-deficit stress treatment, increased drastically till the nineteenth 

day, and then decreased till the senescence. The performance of ∆PRI3 was roughly consistent with the performance of 

∆PRI4. They fell on the ninth to thirteenth days of the water-deficit stress treatment, rose to the maximum on the nineteenth 10 

day, and then decreased after that. 
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Both PRI_ leaf and PRI_shadow were sensitive to RWC. Take PRI570 for example, PRI570 of stressed plants declined 

as water resource became limiting after irrigation stopped. Interestingly, during the first thirteen days after irrigation stopped, 

PRI570 of stressed plants slightly increased, indicating the photosynthesis was not impacted by mild water stress. 

PRI570_shadow was obviously higher than PRI570_mixed and PRI570_leaf during the first thirteen days after irrigation 

stopped, but PRI570_shadow was significantly lower than PRI_leaf and PRI_mixed after the thirteenth day. By the twenty-5 

seventh to thirty-fourth days, when leaves dried out, the values of PRI570 reached the similar low values for the leaf pixels, 

mixed pixels and shadow pixels. Compared with the PRI570 of stressed plants, the time series PRI570 of unstressed plants 

during the same time as the water stress treatment (Figure 4b) was relatively stable. As expected, PRI570_shadow was 

higher than PRI570_leaf and PRI570_mixed during the studied period.  

 10 
(a)                                                                                    (b) 

Figure 4. Time series of photochemical reflectance index (PRI570) of sunlit leaves, shadow, and the mixture of leaves and 

shadow for stressed plants (a) and unstressed plants(b). 

3.2 The shadow effect on water stress detection 

To assess the shadow effect on detecting water stress with PRI, we mixed different fractions of shadow reflectance with 15 

sunlit-leaf reflectance, and analyzed the relationship between RWC and VIs calculated from the mixed reflectance of shadow 

and sunlit leaves. PRI7 and WI/NDVI were negatively correlated with RWC (Table 3), and the rest of VIs were positively 

correlated with RWC. Among the studied VIs, PRI570, PRI1, PRI2, PRI5 and PRI7 demonstrated better performances in 

predicting RWC of winter wheat. Although the ratio of sunlit leaves to shadow was different, the correlation coefficient 

between RWC and VIs did not show pronounced variations accordingly. Figure 5 shows the standard deviation of the 20 

correlation coefficients shown in Table 3. Compared with the other VIs, WI, PRI7, PRI6, PRI4 and PRI3 had higher standard 

deviations, indicating that shadow had a greater influence on the capability of these VIs in monitoring water stress. 

Figure 6 illustrated examples of the significant relationships between water stress indicators and PRI calculated from 

PRI_leaf and PRI_mixed, respectively. PRI570 and PRI2 did not show obvious differences between sunlit-leaf pixels and 

mixed pixels in terms of their relationships with RWC.  PRI7_leaf provided more accurate estimates of RWC than 25 

PRI7_mixed did.  
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We further analyzed the impact of shadow fractions on the slope and intercept of the linear regression equation between 

VIs and water stress indicators (Table 4). The slope and intercept of the studied VIs were strongly correlated with shadow 

fractions, except PRI4 (Table 4). Examples of the correlation between shadow fractions and the parameters of the linear 

regression equation are demonstrated in Figure 7. The slope and intercept of the linear regression equations based on PRI5 

and NDVI had the most significant correlation with shadow fractions. The slope of PRI4 was not correlated with shadow 5 

fractions. We also noticed that PRI1, PRI3, PRI4, WI, and mNDVI705 demonstrated minimal variations in the values of 

slope and intercept, indicating their insensitivities to varying shadow fractions in the application of water stress detection.  

To evaluate if these changes in the values of linear regression parameters affected the accuracy of RWC estimates, we 

applied the regression function derived from the VIs of the generally applicable sunlit leaves/shadow ratio of 50/50 to detect 

water stress using VIs of the varying sunlit leaves/shadow ratio. Results showed that RMSE of RWC estimates did not vary 10 

significantly with shadow fractions, implying the minimal impact of varying shadow fractions on water stress detection 

using PRI. 
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Table 3. Relationships between relative water content (RWC) and vegetation indices (VIs) calculated by reflectance of varying ratio of sunlit 

leaves to shadow in winter wheat during the study period. 

RWC mixed 

Shadow 

0% 

leaf100% 

Shadow 

10%leaf 

90% 

Shadow 

20%leaf 

80% 

Shadow 

30%leaf 

70% 

Shadow 

40%leaf 

60% 

Shadow 

50%leaf 

50% 

Shadow 

60%leaf 

40% 

Shadow 

70%leaf 

30% 

Shadow 

80%leaf 

20% 

Shadow 

90% 

leaf10% 

Shadow 

100% 

leaf0% 

PRI570 0.65** 0.65** 0.65** 0.65** 0.65** 0.65** 0.65** 0.65** 0.64** 0.64** 0.64** 0.63** 

PRI1 0.61** 0.58** 0.58** 0.59** 0.59** 0.60** 0.60** 0.61** 0.62** 0.62** 0.63** 0.64** 

PRI2 0.65** 0.64** 0.64** 0.64** 0.64** 0.64** 0.64** 0.64** 0.64** 0.63** 0.63** 0.63** 

PRI3 0.52** 0.44** 0.45** 0.45** 0.46** 0.47** 0.47** 0.48** 0.49** 0.49** 0.49** 0.50** 

PRI4 0.42** 0.38** 0.39** 0.40** 0.40** 0.41** 0.42** 0.43** 0.43** 0.44** 0.45** 0.46** 

PRI5 0.62** 0.61** 0.61** 0.61** 0.61** 0.61** 0.62** 0.62** 0.62** 0.62** 0.62** 0.61** 

PRI6 0.48** 0.40** 0.46** 0.47** 0.48** 0.48** 0.49** 0.50** 0.50** 0.51** 0.51** 0.52** 

PRI7 -0.62** -0.67** -0.59** -0.59** -0.59** -0.59** -0.59** -0.59** -0.59** -0.54** -0.58** -0.57** 

NDVI 0.53** 0.50** 0.50** 0.51** 0.51** 0.51** 0.52** 0.52** 0.52** 0.52** 0.53** 0.53** 

WI 0.40** 0.30* 0.31* 0.32** 0.34** 0.35** 0.36** 0.38** 0.39** 0.41** 0.42** 0.44** 

WI/NDVI -0.53** -0.51** -0.50** -0.51** -0.51** -0.51** -0.52** -0.52** -0.52** -0.52** -0.52** -0.51** 

mNDVI7

05 
0.51** 0.51** 0.51** 0.51** 0.51** 0.52** 0.52** 0.52** 0.52** 0.53** 0.53** 0.53** 

 

**. Correlation coefficient significant at P＜0.01. 

*. Correlation coefficient significant at P＜0.05. 5 
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Figure 5. The rang of the change in correlation coefficient between relative water content (RWC) and vegetation indices 

(VIs). 

 

 5 

(a) 

 

(b) 

Figure 6. Examples of the strong relationship between photochemical reflectance index of sunlit leaves (PRI_leaf) and 

relative water content (RWC) (a) and the relationship between photochemical reflectance index of mixture of sunlit leaves 10 

and shadow (PRI_mixed) and RWC (b). 
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Table 4. Relationships between shadow fractions and the slope and intercept of the linear regression equation between VIs 

and water stress indicators. 

VI  Slope Intercept 

PRI570 0.98** -0.93** 

PRI1 0.94** -0.77** 

PRI2 0.98** 0.99** 

PRI3 0.64* 0.90** 

PRI4 0.00 0.80** 

PRI5 0.98** 0.99** 

PRI6 0.94** 0.98** 

PRI7 0.99** 0.99** 

NDVI -0.98** 0.98** 

WI 0.97** -0.96** 

PWI 0.93** -0.90** 

mNDVI705 -0.94** 0.95** 

**. Correlation coefficient significant at P＜0.01. 

*. Correlation coefficient significant at P＜0.05. 

 5 

 

 

Figure 7. Relationships between shadow fractions and the slope of the regression equation of relative water content (RWC) 

and photochemical reflectance index (PRI) PRI3 (a), PRI5 (b), and normalized difference vegetation index (NDVI) (c); and 

relationships between shadow fractions and the intercept of the regression equation of RWC and PRI3 (d), PRI5 (e), and 10 

NDVI (f). 
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4. Discussion References 

Theoretically, sunlit leaves are more likely to experience high light-induced environmental stress than shaded leaves 

(Hilker et al., 2008; Middleton et al., 2009; Cheng et al., 2012). Data from previous field samplings and the model 

simulations, although limited, confirmed the impact of shadow fractions on PRI values (Middleton et al., 2009; Cheng et al., 

2012; Takala and Mõttus, 2016). While interests of detecting water stress of plants with PRI are increasing, studies rarely 5 

analyzed the shadow effects on the performance of PRI in water stress detection. This study evaluated the impact of the 

varying shadow fractions on water stress detection in winter wheat using PRI derived from hyperspectral images.  

Our results showed that for unstressed plants PRI570, PRI1, and PRI2 of shadow was generally higher than those of 

sunlit leaves, indicating that the intensity of xanthophyll-regulated photo-protection is lower than in sunlit leaves (Hilker et 

al., 2008; Middleton et al., 2009; Cheng et al., 2012). The difference between PRI_shadow and PRI_leaf varied with PRI 10 

formulations. ΔPRI570 ranged from -0.048 to 0.0136, roughly agreed with results presented in previous studies. Takala and 

Mõttus (2016) reported the range of ΔPRI without a shadow correction was -0.01 – 0.10 at the boreal forest. Middleton et al. 

(2009) reported ΔPRI of -0.035 at a Douglas-fir forest in Canada. Cheng et al. (2012) demonstrated that the average PRI 

values varied from -0.008 to 0.005 for sunlit leaves and from 0.002 to 0.022 for shaded leaves measured in the corn field. 

Mõttus et al. (2015) presented the difference between canopy PRI (including PRI of shaded leaves) and PRI of sunlit leaves 15 

ranged from -0.025 to 0.073 for pine, spruce and birch. 

Interestingly, for stressed plants, PRI570, PRI1, and PRI2 of shadow was lower than those of sunlit leaves, which was 

contrary to the findings for unstressed plants. Also, the range of the difference between PRI_leaf and PRI_shadow increased 

as water stress progressed, but it then decreased to the minimum when prolonged drought caused premature senescence. We 

speculated that one reason might be a sustained water stress deficit inducing chlorophyll degradation more severely on old 20 

leaves (Bolhar-Nordenkampf, Hofer, and Lechner, 1991; Ciganda, Gitelson, and Schepers, 2012; Liu et al., 2015), which are 

shaded by new leaves above. As several studies showed that PRI was related to the pigment content (Suárez et al., 2009; 

Gitelson, Gamon, and Solovchenko, 2017), the early degradation of chlorophyll content in the shaded leaves may lead to the 

change of PRI values. However, both the new leaves and old leaves eventually wilt after the prolonged water stress, resulting 

in the decreasing range in the difference between PRI_leaf and PRI_shadow after 19 days of water stress treatment.  25 

Although the values of PRI_shadow were different from PRI_leaf for both unstressed and stressed plants, the effect of 

the varying fractions of shadow did not lead to the substantial change in the significance of the relationship between PRI and 

water stress indicators. We hypothesized that as water resource became more limiting during the treatment the changes in 

leaf area and pigment content may have a much greater impact on PRI than the de-epoxidation of xanthophyll cycle did. We 

tested different formulations of PRI that were proved to minimize the effect of the structural change in canopies in previous 30 

studies(Hernández-Clemente et al., 2011; Zarco-Tejada et al., 2013), but they did not show any competitive advantage over 

PRI570. Another reason that may attribute to the minimal effect of varying shadowing fractions on water stress detection 

using PRI was the varying degree of shadow. In this study, the reflectance of shadow was derived from pixels classified as 
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the shadow in the hyperspectral images, instead of searching for the darkest spots in the image, which were possibly the soil 

background. The less shaded leaves that were classified as the shadow may be more similar to the sunlit leaves than the 

deeply shaded leaves, resulting in the strong correlation of PRI_shadow with RWC.  

Since shadow fractions influenced PRI values, the parameters of the linear relationship between PRI and RWC were 

correlated to the shadow fraction. However, we noticed for most studied VIs, the values of intercept and slope of regression 5 

models changed within a small range. Furthermore, the varying shadow fraction did not have significant impacts on the 

accuracy of RWC estimated with PRI. Among the studied VIs, PRI570 provided the most accurate estimates of RWC 

regardless of shadow fractions.  In comparison with the structural VIs and water indices, most formulations of PRI showed 

better performances in detecting water status in winter wheat, which agreed with results of several previous studies. Suárez 

et al.(2010), Rossini et al.(2013), Zarco-Tejada et al. (2013) demonstrated that PRI was more sensitive to changes in water 10 

status of different species than NDVI was.  Katsoulas et al. (2016) supported that NDVI at 800 and 680 nm was not very 

sensitive to environmental conditions variations.  Schlemmer (2005) reported that the reflectance of stressed plants was 

increased in the near infrared region due to radiation scattered by air content risen in sponge cavities. Peñuelas et al. (1993) 

observed a significant decrease in the magnitude of the whole near infrared reflectance of stressed plants only when the plant 

was close to wilting. Although the imagery spectrometer used in this study did not cover mid-infrared region which is related 15 

with water and lignin content in vegetation (Asner 1998), previous studies indicated that the use of mid-infrared region is 

insufficient to estimate the leaf water status due to the fact that reflectance changes within a biologically meaningful range 

are too insignificant and the light signal at that spectrum has high light signal noise (Cordon and Lagorio, 2007; Sun et al., 

2008).   

5.  Conclusion 20 

This study evaluated the impact of the varying shadow fraction on seasonal water stress detection in winter wheat using 

different formulations of PRI. Results demonstrated that PRI570, PRI1, and PRI2 of shadow were higher than those of sunlit 

leaves for unstressed plants, but the contrary results were achieved for stressed plants. The range of the difference between 

PRI_leaf and PRI_shadow increased as water stress progressed, but it then decreased to the minimum when prolonged 

drought caused premature senescence. Despite the difference between PRI_shadow and PRI_leaf, the significance of the 25 

linear relationship between RWC and different formulations of PRI did not show obvious variations with shadow fractions. 

For most studied PRI formulations, the slope and intercept of the linear regression equation between RWC and PRI changed 

proportionally with the shadow fraction. However, applying a uniform model to the VIs calculated with varying shadow 

fractions did not significantly affect the accuracy of RWC predictions. Thus, we concluded that the effect of varying shadow 

fractions was minimal to the seasonal water stress detection in winter wheat.  30 
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